Nifedipine Protects INS-1 β-Cell from High Glucose-Induced ER Stress and Apoptosis
نویسندگان
چکیده
Sustained high concentration of glucose has been verified toxic to β-cells. Glucose augments Ca(2+)-stimulated insulin release in pancreatic β-cells, but chronic high concentration of glucose could induce a sustained level of Ca(2+) in β-cells, which leads to cell apoptosis. However, the mechanism of high glucose-induced β-cell apoptosis remains unclear. In this study, we use a calcium channel blocker, nifedipine, to investigate whether the inhibition of intracellular Ca(2+) concentration could protect β-cells from chronic high glucose-induced apoptosis. It was found that in a concentration of 33.3 mM, chronic stimulation of glucose could induce INS-1 β-cells apoptosis at least through the endoplasmic reticulum stress pathway and 10 μM nifedipine inhibited Ca(2+) release to protect β-cells from high glucose-induced endoplasmic reticulum stress and apoptosis. These results indicated that inhibition of Ca(2+) over-accumulation might provide benefit to attenuate islet β-cell decompensation in a high glucose environment.
منابع مشابه
Padina arborescens extract protects high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress
BACKGROUND/OBJECTIVES This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic β cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 p...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملHigh Glucose Aggravates the Detrimental Effects of Pancreatic Stellate Cells on Beta-Cell Function
Background and Aims. We here assess the effects of PSCs on β-cell function and apoptosis in vivo and in vitro. Materials and Methods. PSCs were transplanted into Wistar and Goto-Kakizaki (GK) rats. Sixteen weeks after transplantation, β-cell function, apoptosis, and islet fibrosis were assessed. In vitro the effects of PSCs conditioned medium (PSCs-CM) and/or high concentration of glucose on IN...
متن کاملLack of TXNIP Protects Against Mitochondria-Mediated Apoptosis but Not Against Fatty Acid–Induced ER Stress–Mediated β-Cell Death
OBJECTIVE We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESAR...
متن کاملJNK1 Protects against Glucolipotoxicity-Mediated Beta-Cell Apoptosis
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations fu...
متن کامل